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5. Concluding remarks 

Ambiguity in some of the structure-factor values can, 
in its turn, lead to ambiguous values of the function 
of electron-density distribution calculated as the sum 
(1). In this case the most representative (i.e. giving 
the least r.m.s, error) is the 'mean'  synthesis (2) which 
is the general form of the best synthesis of Blow & 
Crick (1959). However, the possible deviation from 
the mean may vary for different points in the unit cell 
and is characterized by r.m.s, error Or. 

Formulas (8)-(10) estimate the individual values 
trr for the case when the errors in the structure factors 
are regarded as independent and their spread is 
known. [This spread is characterized by As and Bs in 
(3)]. The values trr are closely related to Harker peaks 
at weighted Patterson syntheses. The derived for- 
mulas may be used by various approaches where 
knowledge of individual values Pr is required. 

The author is grateful to O. M. Liguinchenko for 
her help in preparing the manuscript. 
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Abstract 

In experimental investigations and computer simula- 
tions of the structure and properties of grain boun- 
daries, the results are usually discussed with reference 
to the special case of coincidence boundaries, where 
the two neighbouring grains have a three-dimensional 
lattice of symmetry translations in common. For his- 
torical reasons this lattice is called the coincidence 
site lattice or CSL. A systematic determination of 
CSL's for the case of grains with a lattice of rhom- 
bohedral Bravais type is presented. It is shown that 
a number of investigations of the structure of grain 
boundaries in alumina (a-A1203) have to be reinter- 
preted in the light of the present results. A central 
result is the 2 - rhomb theorem, which expresses the 
ratio 2 of unit-cell volumes of the CSL and the 
rhombohedral  crystal lattice in terms of four integral 
parameters that describe the axis and angle of the 
rotation connecting the rhombohedral  lattices of the 
two neighbouring grains and in terms of their axial 
ratio c/a. Two types of coincidence rotations, i.e. of 
rotations generating CSL's, may be distinguished, viz 
common rotations, which generate CSL's with the 
same 2 for every value of c~ a, and specific rotations, 
which generate CSL's with a low value of 2 only for 
a few values of the axial ratio. The ,~-rhomb theorem 
makes it possible to determine systematically not only 
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all common rotations with 2 up to a given maximum 
value 2c but also all specific rotations with 2 -<  2c 
and with c/a in any given interval about the experi- 
mental value of c/a for the material in question. It 
is shown that the multiplicities of the CSL's generated 
by a given rotation in a hexagonal and in a rhombohe- 
dral lattice with the same value of c/a differ by at 
most a factor 3. 

I. Introduction 

Metals and ceramics are used in polycrystalline form 
for most of their applications. The boundaries 
between the crystallites often control mechanical and 
corrosion properties of the materials to a large extent. 
For this reason, great efforts are taken in the produc- 
tion and heat treatment of modern engineering 
materials to optimize the size of the grains and the 
impurity content of the boundaries between them as 
well as the distribution of additional phases. Sig- 
nificant improvements have been obtained in this 
way, e.g. in the toughness and strength of steels or in 
the tensile strength of ceramics. 

Boundaries between regions with the same crystal 
structure will be considered in the present work. They 
will be called grain boundaries and include the special 
case of twin boundaries. 

© 1989 International Union of Crystallography 
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A polycrystal has a higher energy than a single 
crystal with the same mass. The additional energy per 
unit area of a grain boundary depends on the relative 
orientation of the two neighbouring grains and on 
the orientation of the boundary. Brandon, Ralph, 
Ranganathan & Wald (1964) observed preferred 
orientations in cubic metals and interpreted them with 
the so-called coincidence-site-lattice model. The 
original formulation of this model is obtained by 
imagining the two neighbouring lattices continued 
across the interface. The points that are then common 
to both lattices form the coincidence site lattice (CSL). 
If a large fraction of the points of one of the two 
lattices consists of coincidence sites and if the inter- 
face coincides with a densely occupied net plane of 
the CSL, then the model predicts a minimum of the 
interfacial energy per unit area. 

Consider two crystal lattices that have a CSL in 
common. After a translation of one of the lattices 
there will be either no points left in coincidence or 
the points in coincidence will form a lattice which 
differs from the old CSL at most by a translation. The 
translations that do not destroy the coincidence sites 
form another lattice, called the displacement shift com- 
plete or DSC lattice, introduced by Bollmann (1970, 
1982). This lattice is of an importance similar to that 
of the CSL for the discussion of grain boundaries, as 
will be shown below. 

Computer simulations of grain boundaries have 
shown that certain translations that destroy the coin- 
cidence sites will reduce the interfacial energy in 
many cases (Vitek, Sutton, Smith & Pond, 1980). This 
has been confirmed experimentally, e.g. by high-reso- 
lution electron microscopy (Ichinose & Ishida, 1985). 
Therefore one no longer defines the coincidence site 
lattice, despite its name, as a point lattice but as a 
lattice of translations. It consists of the symmetry 
translations that are common to the lattices of the 
two neighbouring grains. The term 'lattice' will be 
used in the following in the sense of'translation lattice'. 
The CSL may be defined as the finest lattice contained 
in both crystal lattices; the D S C  lattice as the coarsest 
lattice that contains both crystal lattices. The CSL 
determined by the two crystal lattices is reciprocal to 
the DSC lattice determined by the reciprocal crystal 
lattices (Grimmer, 1974). This is true for two arbitrary 
crystal lattices that have a one-, two- or three- 
dimensional CSL in common. If the two lattices are 
congruent, then one lattice can be transformed into 
the other by means of a rotation. This rotation will 
be called a coincidence rotation if the two lattices have 
a three-dimensional CSL in common. In the follow- 
ing, attention will be restricted to congruent lattices 
and three-dimensional CSL's. The volume ratio of 
primitive cells for the CSL and the crystal lattice is 
then always a positive integer 2, called the multiplicity 
of the CSL, Whereas the cell volume of the CSL is 

times larger than the cell volume V of the crystal 

lattice, the cell volume of the DSC lattice is 2; times 
smaller than V (Bonnet & Durand, 1975). The vectors 
of the DSC lattice are the geometrically possible 
Burgers vectors of dislocations in the grain boundary 
(Hirth & Balluffi, 1973). These Burgers vectors are 
DSC vectors of small length as a result of energy 
considerations. 

If the crystal lattice can be characterized by an 
axial ratio c/a,  i.e. if the lattice belongs to one of the 
Bravais classes tP, tl, hP or hR, one can distinguish 
between common and specific coincidence rotations 
according to whether the rotation generates a CSL 
for all or only for discrete values of c/a. Periodic 
nets of dislocations have often been observed experi- 
mentally in the boundary plane if the rotation which 
maps the (translation) lattice of one crystal onto the 
other is close to a coincidence rotation with a small 
value of 2, either of the common type or of the specific 
type with c /a  close to the experimental value. It is 
energetically favourable in these cases to maintain 
the atomic arrangement of an ideal coincidence boun- 
dary locally and to compensate the required shift of 
atoms with a periodic array of grain boundary dislo- 
cations. A review of early observations of such arrays 
in cubic crystals has been given by Balluffi, Komem 
& Schober (1972). More recently, periodic arrays of 
grain boundary dislocations have been observed also 
in hexagonal (Hag~ge, Nouet & Delavignette, 1980) 
and rhombohedral (Lartigue & Priester, 1984) 
materials. 

Computer  simulations of minimum-energy boun- 
daries showed that the atoms at grain boundaries sit 
at the corners of simple polyhedra, called 'structural 
units' (Vitek et al., 1980). The representation of the 
boundary structure often becomes particularly simple 
for coincidence boundaries with low values of ,~ 
(Sutton & Vitek, 1983). It can be shown that the 
description of the boundary by structural units is 
equivalent to the description by grain boundary dislo- 
cations (Bishop & Chalmers, 1968; Brokman & Bal- 
luffi, 1981). 

The determination of all possible coincidence 
orientations with low values of 2 is therefore an 
important basis for the investigation of grain boun- 
daries. Systematic methods to find these orientations 
have been developed for cubic lattices (Acton & 
Bevis, 1971; Pumphrey & Bowkett, 1971; Fortes, 1972; 
Grimmer, Bollmann & Warrington, 1974; Mykura, 
1980). Analogous results have been obtained also for 
tetragonal (Erochine & Nouet, 1983) and hexagonal 
lattices for fixed values of c/a  (Warrington, 1975; 
Bonnet, Cousineau & Warrington, 1981; Bleris, 
Nouet, Hag~ge & Delavignette, 1982; Grimmer & 
Warrington, 1985). 

In the case of lattices that can be characterized by 
c/a, one is interested in the common coincidence 
rotations as well as the specific rotations in an 
approximately 2% wide interval centred around the 
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experimental value of c~ a. The present work gives a 
systematic method for determining all coincidence 
rotations of rhombohedral  lattices with c~ a in a given 
interval and with multiplicity ,? up to a given 
maximum value 2c. Similar results have been 
obtained also for hexagonal lattices (Grimmer, 1989). 

The present work starts by giving the form of the 
rotation matrix in rhombohedral  lattice coordinates 
for an arbitrary rotation. These coordinates are 
suitable for the derivation of the conditions which 
the rotation must satisfy in order to generate a CSL 
of given multiplicity. The coincidence rotations may 
be characterized by a quadruple consisting of four 
integers without common divisor, of which three are 
proportional to the direction cosines of the rotation 
axis and the fourth is needed in addition to determine 
the rotation angle. A central result is the 2 - rhomb 
theorem, which gives 2 in terms of the quadruple 
and the axial ratio of the lattice. 

It is convenient for the investigations that follow 
to characterize planes by their Miller-Bravais indices 
and directions by their Weber indices. The 2- rhomb 
theorem is reformulated in terms of these indices and 
it is shown how the well known results on the multi- 
plicity of coincidence rotations for the primitive, 
body-centred and face-centred cubic lattices follow 
from it as special cases. 

The rotations that describe the relative orientation 
of two rhombohedral  crystal lattices can be grouped 
into equivalence classes due to the trigonal symmetry 
of these lattices. Such a class can contain up to 72 
different rotations. Computer  programs have been 
developed which determine the classes of common 
rotations with multiplicity 2 less or equal to a given 
value 2c as well as the classes of specific rotations 
with ~-< ~c and c/a  in a given interval. 

Subsequently it is shown how the previous lack of 
a method to determine these classes systematically 
has influenced recent work on the interpretation of 
TEM images of grain boundaries in a-alumina.  

The final section contains a proof that the multi- 
plicity of the CSL's generated by the same rotation 
in a hexagonal and in a rhombohedral lattice with 
the same value of c/a differ by at most a factor of 3. 

2. Rotations in rhombohedral coordinates, 
rhombohedrally equivalent rotations 

2.1. The rotation matrix in rhombohedral lattice 
coordinates 

Consider a basis defined by three vectors el,  %, e3 
of equal length L with equal angles a between them 
and which span a primitive cell of the rhombohedral  
lattice. Define 7- by 

7-=(cos a ) / (1  +2  cos a )  (1) 

i.e. 
cos a = 7-/(1-27-). (2) 

Table 1. Parameter values for the special cases of  cubic 
lattices and for the limiting cases of  linearly dependent 

v e c t o r s  e l ,  e2  a n d  e3 

¢ c~ a cos  ot a (°) 

el ,  %, e3 parallel 1/3 oo 1 0 
Face-centred cubic (f.c.c.) 1/4 ~ 1/2 60 
Primitive cubic (p.c.) 0 3x/~/2 0 90 
Body-centred cubic (b.c.c.) -1  x / ~  - 1 / 3  109.47 
el ,  e2, e 3 coplanar -oo 0 - 1 / 2  120 

A rotation with angle ¢9 = 20 and axis n = [nl ,  n2, n 3 ]  

normed to length L/(1 - 2 7 " )  1/2 is given by the matrix 

C 2 ÷ ( 1 - 2 " r ) ( X  2 -  Y 2 - Z 2 ) + 2 ~ ' ( C Y - C Z -  Y Z )  

R =  I 2 [ ~ ' Y ( Y + Z + C ) + ( 1 - ~ ' ) C Z + ( 1 - 2 r ) X Y ]  

\ 2 [ ~ ' Z ( Y + Z - C ) - ( 1 - ¢ ) C Y + ( 1 - E ~ ' ) Z X ]  

2[ z X ( Z  + X - C)  - (1 - ¢) C Z  + (1 - 2 ~ ' ) X Y ]  

C 2 + ( 1 - 2 ~')( y 2  _ Z 2 _ X 2) + 2~'( C Z  - C X  - Z X )  

217"Z(Z + X + C )  + (1 - ~')CX + ( 1 - 2 ~ )  YZ] 

217"X(X + Y + C ) + ( 1 - 7 " ) C Y + ( 1 - 2 ~ ' ) Z X ]  

2 [ ¢ Y ( X + Y - C ) - ( 1 - ~ ' ) C X + ( 1 - E z ) Y Z ]  / '  ( 3 )  

C 2 + (1 - 2 r ) ( Z  2 - X 2 - y 2 )  + 2 ¢ ( C X  - C Y -  X Y ) ]  

where 

(C, X, Y, Z)  = +(cos 0, nl sin 0, n2 sin 0, n3 sin 0). 

(4) 
The parameters +(C, X, Y, Z) ,  which (together with 
7-) determine R, will be called a (rhombohedral)  quad- 
ruple. They satisfy the normalization condition 

C 2 + ( 1 - 2 7 - ) ( X 2 +  Y E + z  z) 

+ 27-( YZ + Z X  + X Y ) =  1. (5) 

The non-primitive hexagonal cell has a basis 

fl = el - e 2  

f 2 =  e 2 - - e 3  (6) 

f3 = el + % + %  

and axes a = Ifll, c = If31. The axial ratio c/a  satisfies 

c~ a = [3/ (2-67-)]  '/2. (7) 

Table 1 gives as examples parameter values for the 
special cases of the three cubic lattices and for the 
two limiting cases of linearly dependent vectors el, 
e2 and e 3 .  

2.2. The Miller- Bravais- Weber notation 

In dealing with rhombohedral  and hexagonal crys- 
tals it is convenient for many purposes to express the 
orientation of crystal planes by means of four-term 
Miller-Bravais indices instead of three-term Miller 
indices. Orthogonality between planes and directions 
is then expressed most simply if four-term indices are 
used also for crystal directions, as proposed by Weber 
(1922). Advantages of this combination have been 
pointed out by Frank (1965). The combination is 
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nowadays often referred to as Miller-Bravais indices. 
We prefer to speak of Miller-Bravais-Weber indices. 

They are based on a coordinate system defined by 
the four vectors 

g~ =f~/3 = (e~-e2)/3 

g2 = f2/3 = (e2-e3)/3 
(8) 

g3 = - ( f l  + f2) /3  = ( e 3 -  e l ) / 3  

g4 = f3/3  = (e~ + e2 + e3) /3 .  

The vector g4 is parallel to the threefold axis of the 
rhombohedral lattice. The vectors gl, g2, g3 are 
parallel to twofold axes; they have equal length, and 
the angle between any two of them is 120°; g~ +g2+ 
g3 ---- 0. 

The Weber indices [ x y z s ]  of the rotation axis 
[X Y Z ]  are defined by the equation 

e l X + e E Y + e 3 Z = g l x + g 2 y + g a z + g 4 s  (9) 

with 

It follows that 

x + y + z = O .  (10) 

x = X - Y  

y = Y - Z  
(11) 

z = Z - X  

s = X +  Y + Z .  

The third Weber index z is often replaced by a point 
for brevity because it is determined by the remaining 
components, z = - x -  y. Instead of the rhombohedral  
quadruple ( C X  Y Z ) ,  also the five-term symbol 

( C x y z s ) = ( C  X - Y  Y - Z  Z - X  X +  Y + Z )  

(12) 

or the four-term symbol 

( C x y . s ) = ( C  X - Y  Y - Z .  X +  Y + Z )  (13) 

may be used to characterize a rotation. It follows 
from (5) that these symbols satisfy the normalization 
condition 

3 C 2 +  s 2 +  (1 -- 3~')(X2 + y2 + Z 2) 

= 3C2+ s2+2(1 - - 3 ~ ' ) ( X 2 + x y + y  2) = 3 .  (14) 

The plane perpendicular to a direction with Weber 
indices [x y z s] has Miller-Bravais indices 

x y z S3a2]=  x y Z l - - 3 ~  . (15) 

2.3. Equivalent rotations, choice of  a representative in 
each equivalence class 

Consider two neighbouring grains of the same 
rhombohedral  phase. The relative orientation of their 
lattices can be described by different rotations. If R 

Table 2. The symbols corresponding to RS~, where 
R -.- ( C x y  z s) denotes an arbitrary rotation and S~, 
i = 1 , . . . ,  6 a symmetry rotation of  the rhombohedral 

lattice 

Five-term symbol for 
Si(°) S, RS, 

0 (10000) (Cxyz s )  
12010001] (10003) /2  ((C-s)~2 - z  - x  - y  (s+3C)/2) 
24010001] (10003) /2  ((C+s)/2 - y  - z  - x  (s-3C)/2)  
18012110] (02110).g (xK -2C C - s  C+s ( y - z ) K ) . g  
180[1210] (012-10).g (yK C+s -2C C - s  ( z - x ) K ) . g  
180[1120] (01120).g (zK C - s  C+s -2C ( x - y ) K ) . g  

is a rotation that maps lattice 1 onto lattice 2 then 
any of the six symmetry rotations Si of lattice 1 
followed by R has the same effect. The symbols that 
correspond to the rotations RS~, i = 1 , . . . ,  6 are given 
in Table 2, where 

K = 1-3~" and g = ( 2 K )  -1/2 (16) 

A rotation mapping lattice 1 onto lattice 2 may be 
expressed using instead of the basis E = (e~, e2, e3) a 
symmetry-equivalent basis ES~. The rotation is then 
described by the matrix R ' =  S ~ R S ,  R' may be inter- 
preted also as a rotation expressed in the original 
basis of lattice 1 with the same rotation angle as R 
and with a symmetry-equivalent rotation axis. 
Because either lattice may be taken as lattice 1, also 
R - ~ " - ( - C x y z s )  is equivalent to R. Therefore one 
may define two rotations R and R' as (rhombohe- 
drally) equivalent if 

R'= S, RSj or R ' =  S,R-1Sj (17) 

where Si and Sj denote rhombohedral symmetry rota- 
tions. The maximum number of different equivalent 
rotations is therefore 6 x 6 x 2 = 72 and the maximum 
number of different equivalent symbols is 144 because 
the symbol is determined by the rotation only up to 
a sign. 

If S is the 120 ° rotation about [0001] and T the 
180 ° rotation about [1150] then one obtains 

R'= S-~RS-- . (C y z x s )  (18) 

and 

R"= T-~RT - - . ( -C - y  - x  - z  s). (19) 

It follows that the 144 equivalent five-term symbols 
are obtained from the six symbols in Table 2 by 
arbitrary combinations of the following operations: 

(a) sign change of the first component or simul- 
taneous sign change of the last four components; 

(b) simultaneous sign change of the middle three 
components combined with interchanging two of 
them. 

Symbols that are connected by one of these 
operations correspond to rotations with the same 
angle and with axes that are related by point symmetry 
operations of the rhombohedral  lattice, i.e. by ele- 
ments of 3m. Both operations (a) correspond to the 
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Table 3. Some properties of  equivalence classes of  rotations determined by the form of their representative: 
N = 6to is the number of  different rotations in the class, N'  the number of different 180 ° rotations 

to Represen ta t ive  N '  Axes  o f  180 ° ro ta t ions  in the SST 

1 {100.0} 3 11.0 
{C00.C} 4 00.1,10.0, 01.0 

2 {CO0.s},O<s<C 6 C+s C-s .O ,  C - s  C+s.O 
{COy.C},O<y<-2gC 6 yO.2C, OC. Ky 

3 {CxO.C},O<x<2gC 6 Ox.2C, CO.Kx  
{ C ~C gC. O} o 
{COy.s}, O<y<-2gC, O<-s<C 6 C - s  C+s .2Ky  
{CxO.s}, O<x<2gC, O<s<C 6 C+s C - s . 2 K x  

6 {Cxy.C}, O < x < x + y < 2 g C  6 y x . 2 C  
{C x 2gC-J¢. C}, O<x<gC 6 2 g C - x  x .2C 
{ Cxx.O}, 0 < x < gC 0 

12 All other representatives 0 

inversion, the reason being that simultaneous sign 
change of all five components corresponds to the 
identity. Each of the three operations (b) corresponds 
to a mirror reflection at one of the three mirror planes 
through the axis 3. The combination of (b) with (a) 
corresponds to a rotation about a twofold axis [see 
(19)]; the combination of two operations (b) yields 
a cyclic permutation of the middle three components 
and corresponds to a rotation about the axis 3 [see 
(18)]. 

The three mirror planes of 3m and the plane con- 
taining the twofold axes divide the total solid angle 
into 12 congruent spherical triangles. 

The connection between equivalent symbols shows 
that each class of such symbols contains exactly one 
symbol ( C x y .  s) that satisfies the conditions 

x-->0, y->0, s->0, (20) 

C>-s, 2gC>-x+y,  (21) 

y---x if s = 0 ,  (22) 

y > x  if s > 0  and 2 g C = x + y .  

The inequalities (21) choose among equivalent rota- 
tions those with minimum angle; (20) those with axis 
in a particular one of the 12 spherical triangles, which 
will be called the 'standard spherical triangle' or SST. 
If there are several such rotations then (22) will make 
a unique choice. A symbol satisfying (20)-(22) will 
be called the representative { C x y . s }  of its 
equivalence class; the corresponding rotation is the 
representative of an equivalence class of rotations. A 
rotation that corresponds to a symbol satisfying 
(20, 21) is usually called a disorientation. Conditions 
on quaternions equivalent to (20)-(22) were given by 
Grimmer (1980). 

The number N of different rotations in a rhom- 
bohedral equivalence class is always a factor of 72 
and a multiple of 6, i.e. the integer to = N / 6  is always 
a factor of 12. An example with to = 1 is the class 
consisting of the six symmetry rotations of the rhom- 
bohedral lattice. 

Table 3 gives for all possible forms of the rep- 
resentative the corresponding value of to and a 

characterization of the 180 ° rotations contained in the 
class. 

3. Rotations of rhombohedral lattices that 
generate coincidence site lattices 

3.1. Coincidence rotations 

Attention will be restricted from now on to coin- 
cidence rotations, i.e. to rotations with the property 
that the original and the rotated lattice have transla- 
tion vectors in common that do not all lie in one 
plane. The common translation vectors then form a 
three-dimensional lattice, called the coincidence site 
lattice or CSL. The volume Vc of its unit cell is a 
multiple of the volume V of the unit cell of the crystal 
lattice; the ratio Vc/V is called the multiplicity of the 
CSL. 

Here and in the following section, rhombohedral 
coordinates and quadruples will be used as in § 2.2. 
The reasons for this are that the connection (3) 
between the rhombohedral quadruple and the rota- 
tion matrix expressed in rhombohedral crystal coor- 
dinates is particularly simple and, more important, 
that use will be made in the next section of a general 
result, which gives the multiplicity in terms of the 
rotation matrix if this matrix is expressed in a basis 
that defines a primitive cell of the lattice. 

A rotation is a coincidence rotation if and only if 
its matrix R expressed in crystal coordinates is 
rational, i.e. has only rational matrix elements (Grim- 
mer, 1976). It follows from the algorithm for matrix 
inversion that R -1 is rational if and only if R is 
rational. The matrix R -1 is obtained by replacing C 
by - C  in (3). The elements of R will be denoted by 
Ro, the elements of R-1 by R~. It follows from (3) that 

R33 - R33 = 4zC(X  - Y) 

R33 - Rf3 + R31 - R31 + R 3 2  - R 3 2  = 4 C ( X  - Y) 

RI2+ R-(E-R21-R21=4~'(X+ Y + Z ) ( X -  Y) (23) 

2(Rtl - R22+ R~-2 - R 2 1 )  + R 1 3 +  R~-3 - R 2 3  - Rf3 

= 4 ( X +  Y + Z ) ( X -  r) .  
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Because the left-hand sides of (23) are rational, the 
right-hand sides will be rational, too. If r is irrational 
then it follows that C ( X  - Y) = 0 and (X + Y +  Z)  x 
(X - Y) = 0. Similarly one obtains C( Y -  Z)  = 0 and 
( X +  Y + Z ) ( Y - Z ) = O ,  i.e. 

X = Y = Z  
or (24) 

C = X +  Y + Z = 0  

if z is irrational. The case z rational is equivalent to 
K rational because of (16), to c2/a z rational because 
of (7), and to cos a rational because of (2). 

It follows from (3) and (5) that 

4 C  2 -- 1 + Rll + R22+ R33 (25) 

4 K X  2 -- (1 - r)(1 + R~1 - R22- R33) 

- 2 r ( R ~ 2 +  R~3) (26) 

4 K Y  2 = (1 - r)( 1 + R22- R33- R~I) 

- 2r(R23 + R21) (27) 

4 K Z  2 = ( 1 - r)(1 + R33- R ~ -  R22) 

-2r(R3~ + R32) (28) 

4 K Y Z  = - r ( 1  - R l l +  R21 + R31) 

+ ( 1 -  r ) (g32+ R23) (29) 

4 K Z X  = - r ( 1  - R22÷ R32÷ RI2) 

+ ( 1 -  r ) (R ,3+  R3,) (30) 

4 K X Y  = - z ( 1  - R33+ R13+ R23 ) 

+ ( 1 -  r)(R21+ R~2) (31) 

4 K C X  = "r(R22- R33 + R12- R13) 

+ (1 - 2 r ) ( g 3 2 -  R23) (32) 

4 K C Y  = 7"(R33 - R I I+  R23- R21) 

+ (1 - 2 r ) (R~3-  R3~) (33) 

4K C Z = r( Rll - R22÷ R31- R32) 

+ ( 1 - 2 r ) ( R / , -  R,2). (34) 

If r is rational then the right-hand sides of (25)-(34) 
are rational and it follows from (25), (32)-(34) that 
there exists a number A and four coprime integers 
m, U, V, W such that 

C2=Am, C X = A U ,  C Y = A V ,  C Z = A W .  (35) 

'Coprime'  means that the greatest common divisor of 
the integers equals 1, i.e. 

gcd (m, U, V, W ) =  1. (36) 

It follows from (35) and (5) that 

Am = C 2= C 2 [ C 2 ÷ ( 1 - 2 r ) ( X 2 +  Y2÷ Z2) 

+ 2r( YZ + Z X  + XY) ]  
= a2[m2+ ( 1 - 2 r ) (  U2+ V2+ W 2) 

+ 2 r ( V W +  WU + U V ) ] =  A 2D,  

where 

D = m2+ ( 1 - 2 r ) (  U2+ V2+ W 2) 

+ 2 r (  V W +  WU+ UV). (37) 

If C S 0  then X # 0  and hence A = re~D, i.e. C 2= 
m2/ D and 

C = m/  D 1/2, X = U/ D 1/2, 
(38) 

Y =  V /  D 1/2, Z = W/  D 1/2. 

Equations (36)-(38) remain true also if C = 0. This 
follows from (26), (30)-(32) if X # 0, from (27), (29), 
(31), (33) if Y ~ 0 ,  from (28)-(30), (34) if Z # 0 .  
C = X = Y = Z = 0  is not possible because of (5). 
Substituting (38) into (3) one obtains 

m2+(1-2r)(U 2- V 2 -  W 2 ) + 2 r ( m V - m W  - VW) 

1 I 2 [ z V ( V + W + m ) + ( 1 - r ) m W + ( 1 - 2 z ) U V ]  R 

= D \  2 [ rW(V+W-m)- (1 - r )mV+(1-2z)WU]  

2[rU(W+ U - m ) - ( 1 -  z)mW+ (1-2r) UV] 
m2+(1-2r)(V 2- W 2- U 2 ) + 2 r ( m W - m U  - WU) 

2[rW( W + U+m)+(1-z)mU+(1-2z)VW] 

2[zU(U+ V + m ) + ( 1 - z ) m V + ( 1 - 2 z ) W U ]  

2 [ r V ( U +  V - r n ) - ( 1 - z ) m U + ( 1 - 2 r ) V W ]  ].  

m2+(1-2r)(W 2- U 2- V 2 ) + 2 r ( m U - m V  - UV)]  

(39) 

Equations (37) and (39) give for U = V = W 

1 
R -  m 2 + 3 U  2 

m 2 -  U 2 2 U ( U - m )  
x 2 U ( U + m )  m 2 -  U 2 

2 U ( U - m )  2 U ( U + m )  

and for m = U + V + W = 0  

R _ 
-1  

U2+ UV+ V 2 

2 U ( U + m ) ~  
2 U ( U - m ) )  

m 2 _ U 2 

(40) 

v( u + v) - u v  u( u + v ) \  
x - U V  U ( U +  V) V ( U + V ) ) .  (41) 

- u v  u ( u +  v) v ( u +  v) 

If r is irrational then one can show using (24) that a 
rational matrix R must have one of the forms (40), 
(41) with parameters satisfying (36). Conversely, it 
follows from (39), (37) and (36) that R is rational if 
r is rational or if (24) is satisfied. Coincidence rota- 
tions can therefore be characterized for a given value 
of r by quadruples (m, U, V, W) consisting of four 
coprime integers. Doing this one has replaced the 
normalization condition (5) by (36). The expression 
IX, Y, Z]  for the axis and cos 0 = C for the half-angle 
of the rotation become now [ U, V, W] and 

cos 0 = mD -1/2 (42) 
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or 

tan O = ( 1 / m ) [ ( 1 - 2 ~ ' ) ( U 2 +  V2+ W 2) 

+ 2 ~ ' ( V W +  W U +  UV)] ~/2 

= ( n / m ) [ ( l _ 2 ~ . ) ( O 2 +  17,2+ ~¢2) 

• + 2 z ( 1 ~ ¢ +  I~'U+ 0v~r)] 1/2, (43) 

where 

n = g c d ( U , V , W ) ,  ( J = U / n ,  ~ ' = V / n ,  1?V=W/n.  

(44) 
From (44) it follows that 

gcd ( U, V, W)= 1 (45) 

and [owing to (36)] that 

gcd (m, n ) =  1. (46) 

A coincidence rotation is therefore a rotation about 
a lattice vector [U, V, I~'] by a half-angle 0, the 
tangent of  which is the product of an arbitrary rational 
number n~ m times a quantitE that is proportional to 
the length of the vector [ U, V, W]. 

If r is irrational then a coincidence rotation is either 
[cf. (40)] a rotation about 3 with a rational value of  
x/~ tan 0 (=3 U n / m )  or[  cf~ (41.)] a 180 ° rotation about 
a lattice vector [ U, V , -  U -  V] perpendicular to 3. 
The equations (40), (41) show that R is independent  
of r in both cases. The coincidence rotations for 
irrational ~" are therefore the same for each value of 
z and they coincide with those coincidence rotations 
for rational values of ~- that satisfy U = V =  W or 
m = U +  V+  W = 0 .  They will be called "common' 
coincidence rotations, in contrast to the 'specific' coin- 
cidence rotations, which do not satisfy U = V =  W 
or m = U + V + W = 0  and which depend on the 
(rational) value of z. 

If z is rational then there exist integers /x, v 
satisfying 

v/ lx  = ~" (47) 
and 

gcd (/z, v ) =  1. (48) 
With 

F = / x D  = /xm2+ (/z - 2 v ) (  U2+ V2+ W 2) 

+ 2 v ( V W +  W U  + UV),  

(39) becomes 

[tzm2 + (tz -2v)( u 2- v 2- w 2) + 2v(rnV- row-  VW) 
1 I 2[vV(V+ W+m)+( lz -  v)mW+(lz-2v)UV] 

R=-~\ 2[vW(V+ W-m)-(lz-v)mV+(l~-2v)UW] 
2[vU( W+ U -  m) - (Iz - v)mW+ (ix -2v) UV] 

/.tin2 + (/z -2v)( V 2- W 2- U2)+ 2 t , ( m W  - m U -  WU) 
2[vW( W+ U+ m) + (ix - v)mU + (~-2v)  VW] 

(49) 

2[vU(U+ V+m)+(lz -v)mV+(lz-2v)UW] ) 
2[vV(U+ V - m ) - ( I x  - v)mU+(tz -2v) VW] 

/zrn2 + (/x -2v)( W 2- U 2- V2)+2v(mU - m V-  UV) 

(50) 

and (42) 

cos O= (txm2/ F)  ~/2. (51) 

The variables/x, v, U, V, W and +m being integers, 
+ 

F and the elements r o of the matrices 

r + = F . R  and r - = F . R  -1 (52) 

will be integers, too. 

3.2. The multiplicity ,Y, o f  the coincidence site lattice 

Let R denote the rotation matrix expressed in terms 
of a basis that defines a primitive cell of the crystal 
lattice. The multiplicity Z has been defined as the 
volume ratio of primitive cells for the CSL and the 
crystal lattice. It can be computed as follows. 

Theorem 1 ( Z theorem) 
is the least positive integer such that ZR and 

ZR -I are integral matrices. 

The 2 theorem is valid for lattices of arbitrary 
symmetry, not just for rhombohedral  lattices (Grim- 
mer, 1976). 

Because r ÷ = F R  and r - =  FR -~ have integral 
matrix elements, it follows from the Z theorem that 

F = 6 . 2 ,  (53) 

where 6 denotes the greatest common divisor of  the 
matrix elements of r ÷ and r-.* Equation (53) shows 
that 8 is a divisor also of  F, i.e. 8 ] E t  Multiplying 
both sides of (25) by F =  tzD and of (26)-(28) by 
/zF, one obtains, using (38), (16) and (47), 

+ + 

4/zm 2 = F +  r~-i + r22+ r33 
+ _ _  + 4 t z ( t z - 3 v ) U 2 = ( t z -  v ) ( F +  r ~ - r 2 2  r33) 

- 2v(r~-2+ r1+3) 

4 1 x ( t x - 3 v ) V 2 = ( t z - v ) ( F + r 2 + 2 - r 3 + 3 - r - ~ )  (54) 

- 2 v(r~-3 + r2~) 
+ _ _  + + 4 / z ( / z - 3 v ) W 2 = ( / z -  v ) ( F +  r33 r ~ - r 2 2 )  

+ 

- 2v(r3+l + r32). 

Because 8 divides the right-hand sides of the 
equations (54), it divides also the left-hand sides. It 
follows because of (36) that 

814/z(/x - 3 v), (55) 

i.e. ~, is a divisor of F and a multiple of F/ [4/z( /x  - 
3v)]. A stronger statement can be made i f /x  is even: 
all r~ are even in this case. It follows that 8 is 
even and that ~ is a divisor of F/2 .  Even stronger 
statements follow from the Z-rhomb theorem. In 

* In the case of cubic and hexagonal lattices the quantity corre- 
~p:mding to 6 has been called a by several authors. This might 

lead to confusion in the case of rhombohedral lattices. 
t plq where p and q are integers and p ~ 0 means that q is an 

integral multiple of p; p4"q means that q is not an integral multiple 
of p. 
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Appendix A, this theorem will be derived from the 
theorem by means of elementary methods in num- 

ber theory. It states: 

Theorem 2 (,Y,-rhomb theorem for quadruples) 
The rotation with quadruple (m, U, V, W) acting 

on a rhombohedral lattice with shape characterized 
by/z, v [where the six parameters are integers satisfy- 
ing gcd (m, U, V, W) =gcd  (/x, v) = 1] generates a 
CSL with multiplicity 

,Y, = F /  ( F~F2F3F4) (56) 

where 

F =  tzm2+(lz - 2 v ) ( U 2 +  V2+ W 2) 

+ 2 v ( V W +  WU + UV), 

FI =gcd  (2, m +  U +  V+ W), (57) 

F E = g C d ( E , m + U + V + W , U - V , V - W ) ,  (58) 

Fa=gcd[tz, 2F-(l(U - V ) , 2 F I I ( V  - W)], (59) 

F4=gcd { l x -3v ,  2F-~Im, m+ U+ V+ W, 

2[/xV+ v( U - 2  V+ W)]F31}. (60) 

Notice that the arguments in (57)-(60) are all integral. 
This follows for the last argument in the expression 
for F4 from (59) and the identity 

2[tzV+ v ( U - 2 V +  W)] 

= 2 V. ix + F~v[2F-~I( U -  V) - 2F~-~( V -  W)]. 

The four numbers m, U, V, W cannot all be even 
because of (36). If they are all odd then F~ = F2 = 2, 
if two of them are odd then FI = 2 and F2 = 1, other- 
wise F1 = F 2 - -  1. 

For a given lattice, i.e. for fixed values of /z  and v, 
the ,~-rhomb theorem takes a simpler form. Take as 
an example the special case of a primitive cubic lattice 
(/z = 1, v = 0), where it states 

~ = (m2+ U2+ V2+ W2)/(F~F2). (61) 

The expressions F = m 2 +  U2+ V2+ W 2 and 6 =  
G .  F2 contain identical powers of 2, i.e. 6 = 4  if 
m, U, V, W are all odd, 6 = 2 if two among m, U, V, W 
are odd, 6 = 1 if one or three among m, U, V, W are 
odd. It follows that 2 = F / 6  is equal to the largest 
odd divisor of m2+ U2+ V2+ W 2. 

It was shown in the preceding section that the 
matrix R is independent of ~" and therefore of/x and 
v for common coincidence rotations. The 2 theorem 
then shows that ,~ is independent of tz and v. This 
is confirmed by the 2- rhomb theorem, which takes 
the following form for common coincidence rota- 
tions: 

Corollary 1 (for quadruples of  common coincidence 
rotations) 

If U =  V =  W then 2 =(mZ+3u2) /4  if m and U 
are odd, 2 = m2+3 U 2 otherwise. 

If m = U +  V+ W = 0  then 2 = U2+ UV+ V 2. 

Compared with the ~ theorem the 2 - rhomb 
theorem has several advantages: it simplifies the com- 
putation of ~ ;  it shows the connection between 
and the parameters of the lattice and of the rotation 
more directly; and it makes the change to rotation 
symbols advantageous, as will be shown in the next 
section. 

3.3. The ~,-rhomb theorem for rotation symbols and its 
applications 

The rotation symbol that corresponds to a coin- 
cidence rotation (mUVW)  will be denoted by 
(muvtw) or (muv. w) where 

u = U - V ,  v = V - W ,  
(62) 

t = W - U ,  w = U + V + W .  

From (36) one obtains 

312u + v + w (63) 

and 
g c d [ m , u , v , ( 2 u + v + w ) / 3 ] = l .  (64) 

Replacing v by 
P = tz - 3 v (65) 

one obtains from (48) 

3 [ / z - p  (66) 

and 
gcd [tz, (/z - p) /3]  = 1. (67) 

It follows from (47) and (16) that 

p/tx = (tz - 3 v ) / p .  = 1 - 3 r  = K (68) 

and from (7) that 

c~ a = (31x/2p) 1/2. (69) 

Defining f =  3F  one obtains from (49) 

f =tx(3m2+wZ)+2p(u2+uv+v2)  (70) 

and from (51) 

cos O = (31xm2/f) ~/2, (71) 

Le. 
{ f  -3lxmZ~ 1/2 

t a n 0 = \  ~ - 5  ] 

[ w2+a0(u2+ uv+ v2)] ''2 
= 3/zm 2 (72) 

Expressing the £- rhomb theorem in terms of these 
notations one obtains: 

Theorem 3 ( ~,-rhomb theorem for rotation symbols) 
Consider the rotation with symbol (m u v. w) act- 

ing on the rhombohedral  lattice with axial ratio c~ a = 
(3~/2p)  1/2, where the six parameters m, u, v, w, ix, p 
are integers satisfying (63), (64), (66), (67). The rota- 
tion generates a CSL with multiplicity 

,Y, = f / (3 f ,  f2f3f4), (73) 
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where f is given by (70) and 

f~ = gcd (2, m +  w) (74) 

f2 = gcd (2, m + w, u, v) (75) 

f3 = gcd (/z, 2f-(~u, 2f-( ~ v) (76) 

f4 = gcd {p, 2f2'm, m+ w, 2[/zw + p(v-u)] (3A)- ' } .  

(77) 

For a given lattice, i.e. for fixed values of /~  and p, 
the factors f3 and f4 will take a simpler form. Examples 
are: 

(1) If 24"/~ then f3 =gcd  (/~, u, 1)). 
(2) If 24"p then 

f4 = gcd {p, m, w, 2[/zw + p(v-u)](3f3)-~}. 

(3) If 3q'/z [which is equivalent to 3-t'p because 
of (60)] then f4 = gcd (p, 2f21m, m + w). 

From (2) and (3) it follows that: 
(4) If gcd (6, p) = 1 then f4 = gcd (p, m, w). 

The quantity 8 introduced in (53) satisfies 

8 =  F/,Y, = f / (3~ , )=f ,  f2f3f4, (78) 

and is a divisor of 4/zp according to (55). Theorem 
3 makes it possible to put additional restrictions on 
i2, the number of factors of 2 in 8, if/xp is even. The 
theorem excludes i2 = 0 i f /x  is even, also /2 = 2 i f /x  
contains exactly one factor 2. If, on the other hand, 
p is even then it excludes i2= 1 and the possibility 
that B contains two factors of 2 more than p. 

In the special case of a body-centred cubic (b.c.c.) 
lattice, where /z = 1 and p =4 ,  one has f3 = 1 and 
f4 = gcd (4, 2m/f2, m + w). If 21m and 41m + w then 
8 =8.  In the remaining cases, 8 = 4  if 2lm+w 
and 8 = 1 otherwise. The quantities f =  
3m2+w2+8(u2+uv+v 2) and 8 contain identical 
powers of 2. 

For a face-centred cubic (f.c.c.) lattice, where/z  = 4 
and p = 1, one has f3 = gcd (4, 2u/f l ,  2v/f~) andf4 = 1. 
Four cases can be distinguished, where each case 
precludes all those above:* 

8 = 1 6  if4lu, v a n d 2 1 m + w ,  

otherwise 8 = 8 if 21u, v, m + w, 

otherwise 8 = 4  if2lu, 1), 

otherwise 8 = 2. 

The quantities f = 4(3 m 2 ÷ w 2) ÷ 2( U 2 "at" U l  "3 t- 1) 2)  and 8 
contain identical powers of 2. 

It follows that for the b.c.c, and f.c.c, lattices the 
multiplicity Z is always equal to the largest odd 
divisor of F =f /3 .  The same result has been proved 
in § 3.2 for the primitive cubic (p.c.) lattice. These 
results are closely related to the well known result 
from the theory of coincidence rotations for cubic 

* nip, q m e a n s  n[p and  nlq. 

lattices that centring the p.c. lattice does not change 
the value of ~ (Ranganathan,  1966). The results given 
above for b.c.c, and f.c.c, lattices show a way to derive 
results on coincidences in b.c.c, and f.c.c, lattices 
directly instead of obtaining them, as is more usual, 
from centring the p.c. lattice. 

Common coincidence rotations satisfy either u = 
v = 0 or m = w = 0. The Z-rhomb theorem takes the 
following form in these cases: 

Corollary 2 (for symbols of  common coincidence rota- 
tions) 

If u = v = 0 then Z = (3m2÷ w2)/12 if m and w are 
odd, Z = (3m2+ w2)/3 otherwise. 

If m =  w = 0  then 2 =(uE+uv+v2)/3. 

It has been shown in the Introduction that tables 
of all the classes of coincidence rotations with multi- 
plicity up to a given value Zc and with c/a in an 
interval around its experimental value are an impor- 
tant aid for interpreting detailed microscopic 
examinations of grain boundaries. 

The importance of the ~- rhomb theorem becomes 
apparent in computing such tables. It will be shown 
in the following section that the theorem often sim- 
plifies the determination of the classes for a given 
value of c/a. Much more important is the fact that 
the theorem makes it possible to pick out among the 
infinitely many rational numbers in a finite interval 
of C2/a 2 a finite number of them which may give rise 
to specific coincidence rotations with Z-< ~c. It is 
shown in Appendix B how the following lower 
bounds Zi.b. for the multiplicity of specific coin- 
cidence rotations can be derived from theorem 3: 

Theorem 4 
The multiplicity of specific coincidence rotations 

for a fixed axial ratio determined by/~ and p cannot 
be smaller than 

~q.b. = (81~p)1/2/3 if /.~ and p are odd, (79) 

~q.b. = (2tzP)I/2/3 otherwise. (80) 

Consider as an example the technically important  
ceramic material o l ~ - A 1 2 0 3  . It has a rhombohedral  
lattice with c/a = 2.73, i.e. c 2 / a  2 -- 7.45. Table 4 gives 
all values of c 2 / a  2 between 7.25 and 7.65 for which 
specific coincidence rotations with Z-< 35 are poss- 
ible according to theorem 4 as well as Zmin, the actual 
minimum value of the multiplicity, which was deter- 
mined with a computer program. 

The Z-rhomb theorem makes it possible to deter- 
mine also upper  bounds for the minimum value of 
the multiplicity of specific coincidence rotations: 

Lemma 1 
Let p and q be integers satisfying 3[p ÷ q and either 

9q'p or 9-t'q. Write P = 2/zp if/xp is odd or P = p.p/2 
if/zp is even as a product  P = pq with I P - q[ as small 
a s  possible. Then -~rnin ~ "~'1 ~- ( P ÷ q ) / 3. 
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Table 4. The values of  the axial ratio in the interval 
7.25 -< c2/ a 2< - 7-65 for which specific coincidence rota- 
tions with 2 <-35 are possible according to theorem 4 

ZLb ' has  b e e n  r o u n d e d  to the  nex t  h ighe r  in teger ,  "~min is the  ac tua l  
m i n i m u m  v a l u e  o f  the mul t ip l i c i ty .  T he  rows are a r r a n g e d  in the  
o rde r  o f  i n c r e a s i n g  va lues  o f  c2/a 2= 3 / z / 2 p ;  the la t t icc  p a r a m e t e r  

a is i n d i c a t e d  in  degrees  

p c2/a 2 c~ a a (o) "~l.b. "~min 
87 18 7-25 2.693 55.88 19 32 

155 32 7.266 2.695 55"83 34 34 
34 7 7.286 2.699 55.77 8 8 

117 24 7.313 2.704 55.69 25 25 
132 27 7.333 2.708 55"63 29 29 
49 10 7-35 2-711 55"58 11 14 

162 33 7-364 2.714 55"54 35 38 
64 13 7"385 2-717 55"48 14 14 
79 16 7.406 2"721 55-42 17 29 
94 19 7-421 2"724 55"38 20 22 

109 22 7.432 2.726 55"35 24 40 
124 25 7.44 2"728 55-32 27 27 
139 28 7.446 2"729 55"30 30 51 
154 31 7.452 2-730 55"29 33 36 

15 3 7.5 2"739 55"15 7 7 
161 32 7-547 2.747 55"02 34 34 
146 29 7"552 2'748 55"00 31 34 
131 26 7"558 2"749 54"99 28 48 
116 23 7"565 2"750 54"97 25 25 
101 20 7-575 2"752 54"94 22 37 
86 17 7"588 2"755 54"90 19 20 
71 14 7-607 2.758 54-85 15 26 
56 11 7.636 2"763 54.77 12 12 

153 30 7.65 2"766 54"73 32 32 

The following lemma may give a stronger upper 
bound if/zp is a multiple of 81. 

Lemma 2 
If 3/x(¢:>3 p) then write P = 21.tp/3 if/xp is odd or 

P = txp/6 if tzp is even as a product of two integers 
p and q with p - q as small as possible. Then "~min "~ 

2 2 = p + q .  

The existence of specific coincidence rotations with 
multiplicities as given by the two lemmata is shown 
in Appendix C. 

For all cases contained in Table 4 one has 2mi, = 2~. 
An example where 2 2 < Z ,  is ~ = 81, p =6,  where 
21 =28 and 22= 18 = Zmin. NO cases are known to 
the author where the following rule does not hold: 

"~min : "~1 if 814"/xp, 

2mi, = min (2~, 22) if 811/zp. 

A general proof of the rule is lacking; it would sim- 
plify the computation of specific coincidence rota- 
tions with 2 - 2 c  and c /a  in a given interval by 
eliminating straight away certain pairs ix, p for which 
21.b. <-- Zc. 

4. Application to corundum-type oxides 

Corundum, i.e. a-alumina, has space group R3c and 
c /a  --2.730. There exists a number of oxides with the 
same structure type and a similar ratio c/a, e.g. Fe203 
( c / a = 2 . 7 3 2 )  and Cr203 (c /a=2 .741) .  Alumina is 

Table 5. The equivalence classes o f  common 
coincidence rotations with 2 <_ 60 

The rotation symbols of the representatives have the form 
(mOO.w) 

R e p r e s e n t a t i v e  
,~ O(°)  m w 

3 60.00 3 3 

7 38.21 5 3 
13 27.80 7 3 
19 46-83 4 3 
21 21.79 9 3 
31 17.90 I! 3 
37 50.57 11 9 
39 32.20 6 3 
43 15.18 13 3 
49 43.57 13 9 
57 13.17 15 3 

Axes in  the  SST of  
180 ° r o t a t i o n s  

0 0  1 
1 0  0 0 1 
4 1  0 1 4 
5 2  0 2 5 
7 1  0 1 7 
2 1  0 1 2 
7 4  0 4 7 

101 0 1 1 0  
3 1  0 1 3 
8 5  0 5 8 

112  0 211  
3 2  0 2 3 

an important ceramic material. Its microstructure has 
been studied in detail with a view to optimizing its 
properties by appropriate production processes. 
Several authors have measured the relative orienta- 
tion of neighbouring grains and analysed the disloca- 
tions in the grain boundaries. The interpretation of 
the results in terms of CSL models has been unsatis- 
factory owing to the lack of a systematic investigation 
of all possible CSL's, as will be shown at the end of 
this section. 

It has been shown in the Introduction that coin- 
cidence rotations which serve to interpret grain boun- 
dary structures have a low value of 2 and are either 
independent of c /a  or correspond to a c /a  ratio close 
to the experimental value. Table 5 gives the classes 
of common coincidence rotations with 2 <-60. The 
class in the first row contains six different rotations 
(to = 1), all other classes contain 12 rotations (to = 2). 
The Weber indices of the axes of 180 ° rotations in 
the common classes have the form [uv.0] or [00.w] 
and coincide according to (15) with the Miller- 
Bravais indices of the corresponding symmetry plane, 
i.e. the plane perpendicular to the axis. 

Table 6 gives the classes of specific coincidence 
rotations with 2 -< 28 for c2/a 2= 7.5, i.e. c /a  = 2.739, 
an axial ratio close to the experimental values for the 
three oxides mentioned above. Many specific classes 
with low values of Z exist for this value of c/a. Table 
7 gives the classes of specific coincidence rotations 
with 2 <_ 28 that satisfy 7.25<_c2/a2<_ 7.65 with the 
exception of c2/a 2 = 7.5. 

The 2 columns of Tables 6 and 7 also contain, in 
the cases where there are several classes with the same 
value of Z, in addition to this value an index consist- 
ing of a letter a, b, c , . . .  assigned in the order of 
increasing values of 69 and/or  a number 1 ,2 , . . .  
where there are several classes with the same value 
of O. The representative is given by its angle and 
rotation symbol; the 180 ° rotations in the class with 
axis in the SST are given by the Weber indices 
[u'v'.w'] of these axes; the corresponding symmetry 
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Table 6. Specific coincidence rotations with ~, <-28 for c/ a = 2.739 

R e p r e s e n t a t i v e  

Z co O(°)  m u v 

71 3 85.90 1 0 2 
72 3 85.90 3 6 0 

l l a  t 3 68-68 1 1 0 
l l a  2 3 68.68 3 0 3 
l l b  6 95.22 1 0 3 
13a 6 57.42 2 0 3 
13b n 3 94.41 6 0 15 
13b2 3 94.41 2 5 0 
17a 6 71.12 3 2 2 
17b t 6 96.76 1 2 1 
17b2 6 96.76 3 3 6 
19a t 6 65.10 3 0 5 
19a2 6 65-10 9 15 0 
19b 6 86.98 2 3 3 
21 6 64.62 1 1 1 

23a 6 55.58 6 5 5 
23b n 6 87.51 2 0 5 
23b2 6 87.51 6 15 0 
23c 6 91.25 3 4 4 

. w  

. 1  1 0 . 1  
3 0 1 . 1  
1 0 1  . 2  
3 1 0 . 2  
0 
0 
6 5 0 . 4  
2 0 5 . 4  
3 1 1 . 3  
1 1 2 . 2  
3 2 1 . 2  
1 
3 
0 
0 
0 
1 
3 
3 2 2 . 3  

A x e s  in t h e  S S T  o f  

180 ° r o t a t i o n s  

0 5  2 
5 0  2 
5 0  1 
0 5  1 
5 5  6 
5 5  3 
0 2  1 
2 0  1 

S y m m e t r y  p l a n e s  

in t he  S S T  

1 0 . 5  0 1  
0 1 . 5  1 0  
0 1 .10 1 0 
1 0 .10 0 1 

1 1 
1 1 

1 0 . 4  0 2  
0 1  . 4  2 0  
1 1 .15 
1 2 .10 
2 1 .10 

1 2 . 1  1 2 . 5  
2 1 . 1  2 1 . 5  

1 3 . 2 1 3 .10 
3 1 . 2 3 1 .10 

2 2 .15 

Table 7. Specific coincidence rotations with Z -< 28 and 7-25 -< c2/a 2< - 7.65 (see Table 6 for c /a  = 2.739) 

2 . 1  
17 7 
0 7 
1 0 

0 1 
9 3 
7 5 
0 1 
0 5 
2 1 
0 1 
1 1 

32 .13 
2 . 1  
0 .13 
2 . 1  

62 .25 
58 .23 

2 . 1  
2 . 1  
0 . 1  

28 .11 
2 . 1  
0 .11 
0 .11 

R e p r e s e n t a t i v e  

Ax ia l  r a t io  Z ~o 0 ( ° )  m u 

8 3 86.42 1 0 
15 3 93.82 7 0 

2.699 22 6 64.42 21 34 
24 6 65.38 1 1 
25 3 68.90 1 1 

2.704 25 3 102.71 3 0 

I 
14 3 75.52 5 0 
18 3 68.83 1 1 
21 3 99.59 5 14 

2.711 23 3 86.26 1 0 

28a 6 82.82 3 7 
k 2 8 b  6 97.18 1 2 

14 3 94.10 13 0 
2.717 15 3 86.18 1 0 

20 3 72.54 13 16 
2.724 22 3 86.09 1 0 
2.728 27 3 94.25 25 0 

25 3 94.59 23 0 
2"750 27 3 85.75 1 0 

2.755 20 3 85"70 1 0 
2"758 26 3 68"57 1 1 

12 3 94-78 11 0 
13 3 85-59 1 0 

2"763 17 3 72"90 11 14 
27 3 64"79 11 8 

A x e s  in  the  S S T  o f  S y m m e t r y  p l a n e s  

180 ° r o t a t i o n s  in the  S S T  

1 0 . 1 0 17 . 7 7 0 .34  0 1 . 2 
17 0 .14 0 2 . 1 1 0 . 4 0 7 .17 

2 1 . 1 14 7 .34 

0 1 . 2 34 0 . 7 0 7 .68 1 0 . 1 
3 0 . 2 0 13 . 8 4 0 .13 0 1 . 3 
7 0 .10 0 7 . 2 1 0 . 7 0 5 . 7 
0 1 . 2 49 0 .10 0 5 .49 1 0 . 1 
0 7 . 5 7 0 . 4 0 2 . 7 5 0 .14 
1 0 . 1 0 49 .20 10 0 .49 0 1 . 2 

14 7 .10 2 1 . 7 
1 2 .  2 5 10 .49 

16 0 .13 0 2 . 1 1 0 . 4 0 13 .32 
1 0 . 1 0 32 .13 13 0 .64 0 1 . 2 

0 8 .13 4 0 . 1 0 1 . 8 13 0 .16 
1 0 . 1 0 47 .19 19 0 .94 0 1 . 2 

31 0 .25 0 2 . 1 1 0 . 4 0 25 .62 
29 0 .23 0 2 . 1 1 0 . 4 0 23 .58 

1 0 . 1 0 58 .23 23 0.116 0 1 . 2 
1 0 . 1 0 43 .17 17 0 .86 0 1 . 2 
0 1 . 2 71 0 .14 0 7 .71 1 0 . 1 

14 0 .11 0 2 . 1 1 0 . 4 0 11 .28 
1 0 . 1 0 28 .11 11 0 .56 0 1 . 2 
0 7 .11 4 o .  1 0 1 . 8 11 0 .14 
0 4 .11 7 0 . 1 0 1 .14 11 0 . 8 

planes are given by their Miller-Bravais indices 
( hk.l) ~ (pu'pv'.lxw'). Either [u' v'.w'] or ( hk.l) will be 
independent of K = p/ tz  if they are expressed in terms 
of the parameters in the rotation symbol of the rep- 
resentative according to Table 3. Cases where 
[u'v'.w'] is independent of K have been written on 
the left side; cases where (hk.l) is independent of K 
have been written on the right side. 

Pairs of specific rotations with symmetry planes 
related as (hk.l) and (kh.l) have the same multi- 
plicities for the axial ratio considered in Table 6. This 
is not the case for the axial ratios considered in Table 
7. If h and k are interchanged in the symmetry planes 
appearing in this table then the corresponding multi- 
plicities will be larger than 28. This implies that the 
table contains no symmetry planes of the form (hh.l). 
If I and at least one of the numbers h and k are not 

divisible by 3 then the indices (hk.l) of the symmetry 
planes in Table 7 satisfy 3 - h +  k+  l.* 

* Note added in proof 
T h e  a u t h o r  l e a r n e d  a f t e r  t he  a c c e p t a n c e  o f  the  p r e s e n t  a r t i c l e  

t ha t  D o n i ,  F a n i d e s  & Bler is  [Cryst. Res. Technol. (1986).  21, 1469-  

1474] p u b l i s h e d  a p a p e r  on  the  d e t e r m i n a t i o n  o f  c o i n c i d e n c e  

r o t a t i o n s  fo r  r h o m b o h e d r a l  la t t ices .  T h e y  start  wi th  the  a s s u m p t i o n  

tha t  Z is t he  l eas t  p o s i t i v e  i n t e g e r  such  tha t  Z R  is an  i n t eg ra l  

ma t r ix ,  w h i c h  is n o t  a l w a y s  t rue .  A c o u n t e r e x a m p l e  is t he  c lass  

w i th  r e p r e s e n t a t i v e  r o t a t i o n  {muv.w} = {15 7 14 . 5} o f  t he  r h o m -  

b o h e d r a l  l a t t i ce  w i t h / z  = 49 a n d  p = 10, i.e. c /a  = 2-711, f o r  w h i c h  

1 
R ~ . - - I  

14 

) '/ 67) 18 9 8 / 48 - 3 0  

- 1 4  a n d  R -1 1 = - -  76 124 94 . 
- 8  1 98 - 2 2  - 7 2  45 
- 4  6 12 

T h e i r  a s s u m p t i o n  g ives  Z = 14 w h e r e a s  the  t rue  v a l u e  o f  Y~ is 

7 x  1 4 = 9 8 .  
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The symmetry planes appearing most frequently in 
Table 7 are 

(01.2), 7 times 

(10.4), 5 times 

(10.1), 3 times. 

The basal plane (00.1) and the planes of type {01.2}, 
{10.4} and {10.1} are exactly those mentioned by 
Morrissey & Carter (1984) as possible twin planes. 
The basal twin (c twin) with plane (00.1) corresponds 
to the common rotation with ~ = 3 (cf Table 5). This 
twin and the rhombohedral twin (r twin) with twin 
plane of type {01.2} are the most common types of 
twins in corundum and haematite (Morrissey & Car- 
ter, 1984; Bursill & Withers, 1979). The planes {01.2} 
are the faces of the morphological rhombohedral cell, 
which has an axial ratio c/2a as compared with c/a 
for the structural cell (Kronberg, 1957). The planes 
{10.1} are the faces of the structural rhombohedral  
cell defined by the vectors el, e2, e3. 

Morrissey & Carter (1984) investigate commer- 
cially available sintered alumina, determining the 
relative orientation of neighbouring grains and the 
Miller-Bravais indices of the boundary planes 
between them. The twin boundaries with planes {01.2} 
and {10.4} are described as coincidence boundaries 
with multiplicities Z = 8 and Z = 14, respectively. In 
the first case, they remark that 'the value ,~ = 7 is 
actually closer to a perfect CSL'. They discuss boun- 
daries corresponding to the common coincidence 
rotations with ~ = 7 and ,~ = 13 but are not aware of 
the existence of specific coincidence rotations with 
the same multiplicities. The common rotations with 

= 7 and ,~ = 13 have symmetry planes of type {hk.0} 
according to Table 5 and therefore cannot serve to 
describe the {01.2} and {10.4} twins. However, Tables 
6 and 7 show that the smallest multiplicities of specific 
coincidence rotations with planes {01.2} and axial 
ratio in the interval 2.693-<c/a-<2.766 are ~ =7  
(c/a = 2.739) and ~ = 8 (c/a = 2.699). The first sol- 
ution has an axial ratio much closer to the experi- 
mental value 2.730 of corundum. Also Shiue & Phil- 
lips (1984), making use of a theorem by Grimmer 
(1974), found that the rhombohedral twin is better 
described as ,~ = 7 than as ,~ = 8, The situation is 
similar for the twin with plane of type {10.4}, for 
which Tables 6 and 7 give the following rotations 
with small values of ,~: 

= 12, c/a=2.763,  

= 13, c/a =2.739, 

=14,  c/a=2.717.  

The solution with axial ratio closest to the experi- 
mental value is ~ = 13, not 2 = 14. 

Morrissey & Carter (1983) determined the Burgers 
vectors of dislocations in basal twin boundaries and 
found that they in fact coincide with vectors of short 
length of the DSC lattice for the common rotation 
with ~ = 3. This was confirmed by Shiue & Phillips 
(1984). 

Lartigue & Priester (1984, 1985, 1986) have investi- 
gated grain boundaries in polycrystalline alumina. 
Lacking results on coincidence rotations for rhom- 
bohedral lattices, they interpret their observations in 
terms of the (common and specific) coincidence rota- 
tions for the primitive hexagonal lattice with c2/a 2= 
15/2. These rotations had been determined first by 
Bonnet et al. (1981) for multiplicities 2h--<25 and by 
Delavignette (1983) for ~h <-- 35. In the rhombohedral  
lattice obtained by centring the primitive hexagonal 
lattice these rotations generate CSL's with multiplicity 

= ~h or ~ = 3.~h, as will be shown in § 5. The true 
multiplicity may therefore be three times larger than 
indicated by Lartigue & Priester (1984, 1985, 1986). 
Other shortcomings of an interpretation of boun- 
daries in a-a lumina in terms of the CSL's for primitive 
hexagonal lattices are: 

(1) A primitive cell of the DSC lattice for the 
rhombohedral case can be obtained by centring the 
corresponding cell for the hexagonal case in such a 
way that the cell volume decreases by a factor of 3 
if ~ = ~h and by a factor of 9 if ,~ = 3-~h. The Burgers 
vectors of dislocations in the boundary being vectors 
of short length of the DSC lattice, some of the Burgers 
vectors most likely to occur are lost in the hexagonal 
treatment. 

(2) Table 7 shows that the c~ a values with specific 
rotations of multiplicity ,~ -< 28 that lie closest to the 
experimental value 2-730 for alumina are 2.728 and 
2.724; the closest value for the hexagonal lattice is 
2.739 instead. 

It is possible in some cases to reinterpret the results 
of Lartigue & Priester (1984, 1985, 1986)immediately 
in terms of the results for rhombohedral lattices: basal 
twins correspond to the common coincidence rotation 
with £ = 3. In general, however, additional informa- 
tion is needed for a reinterpretation because the 
relative orientation is described assuming hexagonal 
symmetry instead of the rhombohedral symmetry of 
a-alumina. This reinterpretation is carried out by 
Lartigue & Priester (1988) and by Grimmer, Bonnet, 
Lartigue & Priester (1989). 

The experimental studies of the remaining corun- 
dum-type oxides are much less detailed: Bursill & 
Withers (1979) observe basal twins and twins with 
{01.2} and {10.2} planes in haematite iron ore (Fe203). 
The basal twins may again be interpreted in terms of 
the common rotation with £ = 3, the other two twins 
in terms of specific rotations with ~ = 7 for c/a = 
2.739. The usual rhombohedral  twin has a plane 
{01.2}; considerably stronger strain contrast was 
observed in the twin with {10.2}. 
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5. Comparison of the results for rhombohedral 
and hexagonal lattices 

Consider a primitive hexagonal lattice and the rhom- 
bohedral lattice obtained from it by rhombohedral 
centring. The multiplicities Z h of the coincidence site 
lattice (CSL) generated by a given rotation in the 
hexagonal lattice and Z of the CSL generated by the 
same rotation in the rhombohedral lattice are con- 
nected by: 

Theorem 5 
The coincidence site lattices generated by the same 

rotation in a primitive hexagonal lattice and in the 
rhombohedral lattice obtained by centring the 
hexagonal lattice have multiplicities differing by at 
most a factor of 3. 

This can be shown as follows. Rhombohedral cen t  
ring of the primitive hexagonal lattice leads to a 
rhombohedral lattice with a volume of the primitive 
cell 3 times smaller. By a further centring the rhom- 
bohedral lattice can be transformed into a primitive 
hexagonal lattice with values of c and a 3 times 
smaller than for the original lattice. The primitive cell 
of the finer hexagonal lattice has a volume 9 times 
smaller than the primitive cell of the rhombohedral 
lattice. A rotation generates in both hexagonal lattices 
CSL's with the same multiplicity 2 h. The CSL for the 
rhombohedral lattice contains the CSL for the coarser 
hexagonal lattice and is contained in the CSL for the 
finer hexagonal lattice. Therefore Z must be a divisor 
of 32 h and a multiple o f ~ h / 9 ,  i.e. Z = 32 h, .~h, ~,h/3 
o r  ~,h /9 .  If the rhombohedral centring does not give 
additional common translations then Z = 3zh. 

It will be shown next that Z = ~ , h /9  does not occur. 
Consider two congruent primitive hexagonal lattices, 
1 and 2, with common translation vectors forming a 
three-dimensional CSL. The following considerations 
can be formulated more easily if the lattices are taken 
as point lattices with at least one point in common. 
The CSL consists then of all those points that are 
common to the two lattices. The rhombohedral cent- 
ring is carded out on lattice 1 first. Two new net 
planes are inserted in this way between each pair of 
neighbouring net planes perpendicular to the sixfold 
axis of lattice 1. The old coincidence points lie in the 
old net planes. These will not receive additional 
points. If the centring produces additional coin- 
cidence sites, then these sites must lie in the new net 
planes; the distance between neighbouring net planes 
of the CSL decreases by a factor of 3 in this case. 
Analogous considerations hold if the rhombohedral 
centring is consecutively carried out on lattice 2. 
Because the density of lattice points is always the 
same for parallel net planes one obtains the following 
results: ~, = ~ , h /3 ,  ,~h o r  3 . ~  h according to whether 
both, one or none of the two centrings produces new 
net planes of CSL. 

It is interesting to compare the minimum values of 
the multiplicities of specific coincidence rotations for 
the hexagonal and the rhombohedral lattice with the 
same value of c/a.  This can be done by comparing 
the values in Table 4 (or in Table 7) with the results 
of Delavignette (1983), which give, for example, 

h 
, ~ m i n  = 8 < ~ m i n = 2 4  if c / a  =2.699 

and 
h _ 

~ m i n > 2 8 > . ~ m i n  - 17 if c / a  =2.708. 

This result confirms that the cases Z = ~ , h / 3  and 
= 3~ h do occur. 

The author is grateful to Dr R. Bonnet, Dr S. 
Lartigue and Professor L. Priester for stimulating 
discussions on the application of his results to grain 
boundaries in alumina. 

APPENDIX A 
Proof of the :~-rhomb theorem 

A.1. Introduction 

The Z-rhomb theorem for rhombohedral quadru- 
ples, which will be proved in this Appendix, expresses 
the multiplicity Z of a coincidence rotation in terms 
of the parameters m, U, V, W, which determine the 
rotation, and of/x, v, which determine the axial ratio 
of the lattice. 

If we define p = ~ -  3 v, it follows from (49), (50) 
and (52) that 

4/xm 2 F +  r~-i + + + = r 2 2  + r33  
+ + 

4/xm U = r33 - r33 - r23 + r23 
+ + 

4 txmV = rll - r-(l - r31 + r31 
+ + 

4/zrn W = r22 - r2-2 - r12 + r~-2 

4 p . m ( U + V + W )  + r32+ + - + = r32 - r~3 - r13 + r21 - r2~ 
-F 

4 / z U ( U +  V +  W ) = F + r l l - r 2 2 - r 3 3  
+ 

+ r 1 2  + r 1 2  + r l  3 + r13  
+ 

4/zV( U +  V+ W) = F +  r 2 2 -  r 3 3 -  r~-i 
+ + 

+ r23  + r23  + rE l  n t. r21  
+ 

4/zW( U +  V+ W) = F +  r33 - -  r~-~ - r22 (81) 
+ + 

+ r31 + r31 + r 3 2 +  r32 
+ + + 

4pm(  U -  V) = r 3 1  - r31 + r 3 2  - -  r32-2raa+2r33 
+ 

4pU(  U - V) = F +  rll - r 2 2 -  r33 - r-~2- r-f2 
+ + 

4pV(  U - V) = - F +  r33+ r1-1 - r22+ r21 + r21 
+ + 

4 p W (  U - V) = r31 + r3-1 - -  r32 - -  r32 

4pm(  V W) + - r - f  E+ + -  - -  = r12 rl3 r - (3  - -  2 r - ~ l  + 2r-(1 
+ + 

4 p U (  V -  W )  = r l 2 +  r 1 2  - r 13  - r13  
+ - + 

4pV( V -  W) = F +  r 2 2  - r 33  - r l l  - r 23  - r 2 3  

4pW(V W) - F + r ~ + r 2 2 -  ÷ + - = r33 + r32 + r;2. 
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will be determined by evaluating the factor 6 = 
F / 2 .  6 is contained as a factor in each term on the 
right-hand sides of the 16 equations (81). Each group 
of four equations combined with (36) therefore gives 
one of the following results: 

6[41~m (82) 

6 4Ix( U + V + W) (83) 

6 4p( U -  V) (84) 

6140( V -  W). (85) 

In order to derive the X-rhomb theorem from the 
theorem it is useful to write the rotation matrix not 
only in the form (49), (50) but also as follows" Let 

"4" 

~0 be the elements of the matrices U = 3 F R ,  ~-= 
3FR -~ respectively. Then one obtains 

3 F = I x [ 3 m 2 + ( U +  V +  W ) 2 ] + 2 p [ ( U  - V) 2 

+ ( U -  V ) ( V -  W ) + ( V -  W) 2] (86) 

and 

3r~-~ = r l ,  = - +  Ix[3m2 + 2m( V - W) 

+ - +  

3 r21 = r21 

+(u+ v+ w ) ( u -  v -  w)] 

+ 2p[( u + v)( u -  v) 
(87) 

+ ( W - m ) ( V -  w)] 

=2Ix[m(V+2W)+(U+ V+ W)V] 

+2p[2V(U- V ) + ( V - m ) ( V -  W)]. 

Equation (50) shows that the remaining matrix ele- 
- - +  

ments of ?+ and ~- are obtained as follows: r3~ is 
- +  

obtained from r2~ by exchanging m ~ - m ,  V ~  W; 
~ (i = 1, 2, 3) is obtained from ?+~ by exchanging 
m ~ -m.  The other elements are obtained from those 
in the first column by cyclic permutations: Making 
the replacement U-* V ~  W ~  U in the expression 
for ~ ,  one obtains the matrix element with subscripts 
i, j replaced according to 1 ~ 2 ~ 3 -> 1. It follows that 
the expressions for all the ~ are obtained from (87) 
by the operations 

m ~ - m ,  permutations of U, V, W. (88) 

Taking into account that W - U = - ( U - V ) -  
( V - W ) ,  one recognizes that each term of ~ 
contains one of the factors Ix, U - V ,  V - W  and 
one of the factors 2p, m, U +  V+ W. Each term of 
3F  even contains one of the factors Ix, ( U - V )  2, 
( U -  V)( V -  W),  ( V -  W) 2 and one of the factors 2p, 
m 2, ( U + V + W )  2. 

With the definitions 

13 = gcd (Ix, U -  V, V -  W) (89) 

and 

3, =gcd (p, m, U +  V+ W) (90) 

it follows from the remarks made above that/33,1all ~ 
(i.e./33, is a factor of all ~ and of all f~, i , j  = 1, 2, 3). 

/33, is therefore a factor of 3F/.,Y, = 36, i.e. 

/33,13a. (91) 

The quantity 6, being an integer, can be w.ritten 
uniquely as 

6 = d~2a23 '~3, (92) 

where the d~ are integers and 

gcd (6, d , )=  1. (93) 

Similarly, one can write 

/3 = b~2bG %, 3, = c~2~3 c~ (94) 

with integers bi, ci and 

gcd (6, b~) = gcd (6, e , )= 1. (95) 

A.2. Determination o f  dl 

It will be shown that 

dl = bl cl. (96) 

It follows from (91) that b,c, ldl but it remains to be 
shown that d, lb,c,. Equation (48) shows that 

gcd (ix, p)[3. (97) 

From (92), (93) it follows because of (55) that 
d~ = BC, where B = gcd (dl, Ix) and C = gcd (d~, p ) .  
gcd (B, p) = gcd (C, Ix) = 1 because of (97). Equations 
(82)-(85) show therefore that Clm, c l u +  V+ W, 
B[U-V, B [ V - W ;  i.e. B[/3, cir. B and C do not 
contain factors 2 or 3 so that it follows from (94) that 
Bib1, Clcl ,  i.e. dllb, cl. 

A.3. Determination of  d2 

Let k be the number of factors of 2 in 13% 

k = b2 + c2. 

If b2 > 0 then 2[ix (97), 2-t'p ~ c2 = 0. Similarly, it fol- 
lows from c2>0 that b2=O so that either b2= k or 
c2 = k. Relation (91) shows that 2k[6, i.e. d2 >- k. It will 
be shown in the following that d2 <- k + 2  and the 
conditions will be derived under which d2 = k + 2 and 
d2 -- k + 1 respectively. 

(1) Assume d2 > k + 2 
(1.1) 2-fix ~82)-~85) , 2k+llm, U +  V+ W, 
p( u -  v), p( v -  w). 

It follows because of (90) that 2kip, 2k+~-t'p. 
(1.2) 2]IX ~82)-~85) , 2k+l[ixm, IX(U+ V+ W), 
u - v , v - w .  

It follows because of (89) that 2klix, 2k+'-l'ix. 
In both cases it follows that 2[m, U +  V+ IV, U -  V, 

V - W .  This is possible only if m, U, V, W are all 
even, contrary to (36). 

(2) Assume d2 = k + 2. 
(2.1) 2~p-~2,~-~2~1/3-,2~1~, u - v ,  v -  w. 

(2.1.1.) k=O. 
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Assume /x  e v e n  (48)) /Y odd. Equat ion (87) shows 
because 41r~-~ that  ( V - m ) ( V - W )  is even and 
because 4 r~-3 that  ( V -  m)( U -  V) is even. It follows 
that  V - m  is even because /x, U - V  and V - W  
cannot  all be even if k = 0 .  Using W - U =  
- (  U - V) - ( V -  W) one can show similarly that  also 
U - m  and W - m  are even. It follows that  U - V  
and V -  W are even, contrary to k = 0. 

~ p ,  odd --> v even because p is odd. 

4 F (49)) 4 m 2 - }  - U 2 q  - g 2 q  - W z 

(36) 
) m, U, V, W are all odd 

(50) 4 + + 
) r l l  , r21. 

(2.1.2) k>0--> 2 [ U -  V, V -  W--> U, V, W are 
all even or all odd.  

Assume U, V, W even (36)) m odd (86)> 2k+21p,. 
Equat ion (87) shows because 2 k+2 r~-~ that  2 TM V -  W 
and because 2 k+2 + 2 k+ l  r~3 that  U -  V, contrary to the 
definition of  k. 

U, V, W odd (86)) m odd o r  2 k+2/t/,. 

Assume m even ~ 2k+Z[tz. Equat ion (87) shows 
because 2k+2lr~ that  2k+~ I V w and because ,,k+2~ + - -  Z [ r l 3  

that  2k+~[ U -  V, contrary to the definition of  k. 

m odd (87)) 2k+2 r]~ ' + r21. 

It follows for k > 0 that  

m, U, V, W are all odd. (a)  

Because condi t ion (a)  is invariant  under  the 
,~ k+21 + + operat ions (88), it follows from z Ir~, r21 that 

2 k+2 all r~, i.e. 2 k+2 6. 
(2.2) Zip (48)) 2-t'p,, u --> 2-/'/3 -> 2kly --> 2klp, m, 
U +  V +  W. 

Equat ion (87) shows because 2k+21r~-i that  

2k+'[~(m+U+ V+ w ) v + p ( V - W ) V  (98) 
and because ,.,k+Z~ + Z Ir32, r~-3 that  

2k+'ltz(m+U+ V+ W ) W + p ( W - U ) W  (99) 
and 

2k+'ltx(m+ U+ V+ W ) U + p ( U -  V)U. (100) 
(2.2.1) k = 0 .  

4 F (86),21o) 4 3 m 2 + ( U +  V +  W) 2 

--> 21m+ U +  V +  W. 

(2.2.2) k > 0 .  Equat ion  (36) shows that  21m, 
U + V +  W implies that  exactly one of  the numbers  
U, V, W is even. 

Assume 2k+l't'p. 
Assume 2k+"~m + U + V +  W. 
If  U is even then V, W are odd and (98) is not fulfilled. 

Similarly, it follows from V even that  (99) is not 
fulfilled, from W even that  (100) is not fulfilled. 
~2k+'lm+ U+ V+ W. 
If  U is even then V, W are odd and (99) is not  fulfilled. 
Similarly, it follows from V even that (100) is not 
fulfilled, from W even that  (98) is not fulfilled. 

2k+l]p. Because only one of  the numbers  U, V, W 
is even, it follows from (98)-(100) that 2k+l lm+ U +  
V + W .  

It follows for k-> 0 that  

2k+~lp , m +  U +  V +  W. (b) 

If  (b) holds  in the case (2.2) then 2 k÷2 r~-,, ÷ r~.  The 
former holds because (98) is satisfied, the latter 
because (87) shows that  2k÷2[r~] if 

3 m 2 + 2 m ( V  - W ) + ( U +  V +  W ) ( U -  V -  W)  

= 4 m ( m  + V) 

+ ( m +  U+ V+ W ) ( - m +  U -  V -  W) 

is a mult iple of  2 k÷2. This is fulfilled because it follows 
from m + U + V + W  even that  - m + U - V - W  is 
even. Condi t ion  (b) being invariant  under  the 
operat ions (88), it follows from ,~k+2 + + z Ir~, r21 that  
2 k÷2 all r~, i.e. 2 k+2 t% 

(3) Assume d2 -> k +  1. Equat ion (87) shows that  
2 TM r~- l i s  always satisfied. 

(3.1) 2-t"7-->2 k fl -~ 2 k IX, U -  V, V -  W. 
2 k+~ F (86)) 2k+, /z[m2_b(U.k_ V-k- W)2]~2 k+l/.t, or 
2 m +  U +  V +  W. 2 k÷~ r~-i is satisfied in both cases. 

(3.2) 213,-,k>0, 2kip, m, U +  V +  W (87)) 
2k+'lrT~. 2lm+ U+ V+ W is always satisfied in this 
case. 

Because the condit ions 

2lm+ U+ V+ W (c) 
and 

2k+~l~ (d) 
are invariant  under  the operat ions (88), it follows 
from z"k+lllrll,+ rzl+ that  2k+l all rij,± Le." 2k+116. 

In summary ,  d2 = k + 2 holds if and only if one of  
the condit ions (a) ,  (b) is satisfied, d2 > - k +  1 holds if 
and only if one of the condit ions (c), (d)  is satisfied. 

A.4. Determination o f  d 3 

Redefine k to be the number  of  factors of  3 in fly, 

k = b 3 h- c 3 . 

It follows from (48) and p = / x - 3 v  that  each case 
belongs to one of  three classes. (a)  32[/z ~ 3[p, 32"fp, 
(b) 32q'/x, 3[/x ~ 3[p, (c) 3~'/x ~ 3-t'p. Two subclasses 
may be dis t inguished according to (89), (90) and (94) 
if (a)  or (b) holds,  i.e. each case belongs to one and 
only one of  ~he following classes: 

(1) 321/z (-~3[p, 32~'p), b3=k,  c3=O 

(2) 321/z(~31p, 32~'p), b 3 = k - l ,  c 3 = l , k > O  
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(3) 324"/z, 3/z  (~3  p),  b 3 = 0, c3 = k 

(4) 3=~9z, 31~ (--,310), ba=l, c a = k - l , k > O  

(5) 34"/x (~34"p), b3= Ca=0, k = 0 .  

If d3 > 0, i.e. 316, then it follows from (55) that 3/z 
3 p. Because 6 F, it follows that 3 F (4--~2-~ 9) 31(u+ v +  
w )  z -  3( v w  + w u  + uv )  -~ 31 u + v + w, i.e. 

If  d3 > 0 then 3]/x, p, U + V + W .  (101) 

It follows that  d 3 = k = 0 for the cases in class (5). 
From (91) it follows that  3k-llt~ , i.e. d3 -> k - 1 .  It 

will be shown in the following that da-< k for the 
cases in the classes (1)-(4)  and the condit ions will 
be derived under  which d 3 = k. 3-t'u in the classes 
(1)-(4) because of (48). It follows from (50) that 

ra+3- r~3=4vm( U -  V) (102) 

+ - - = 4 u r n ( V -  W) (103) r l l  r l l  

r~a + + r13- = 4 U [ u ( U +  V+ W)+pW]  (104) 
+ 

r21+r-~l = 4 V [ u ( U +  V+ W)+pU]  (105) 

ra+2+ r ;2=4W[v(U+ V+ W)+ pV] (106) 

=4W[tzV+u{(U-V)-(V-W)}]. (107) 

(1) Assume d 3 > k. 
(1.1) 32/z (-~3 p, 32q'p), b 3 = k, c3 = 0 

(90),( 101 ) (82),( 102),(103) 
c3 = 0 ) 34"m , 3  k+l/z, 

U -  V, V -  W contrary to b 3 = k. 

(1.2) 3=1~ (-*31p, 32~cp), b3= k -  l, c3= l, k>O 

324. p (84),(85) (89) (82) ) 3k[ U -  V, V -  W ) 3kd'/z ) 9[m 

(1o7) 
.k+l + - -  - 3kirk,2 + -  3IVW _5 Y32 -t- l'32 -*  /'32 

3lU-V,V-W 
,3lu, v, w. 

It follows that  3[m, U, V, W contrary to (36). 
(1.3) 32-r/x, 31~ (-~alp), ba=0, c3= k 

b 3 = 0 (89).(lOl)) 3"t" U - V or 34" V -  W. It follows from 
(102), (103) that  3k+llrn and from (84), (85) that 
3k+llp (104)-(106~ 3 k + I [ U ( U +  V+ W), V(U+ V+ W), 
W(U"[- V--I- W) (36)7 3 TM U +  V +  W contrary to 
C3 = k. 

(1.4) 324"/x, 31~ (-,3[p), b a = l ,  c a = k - l ,  k > O  

32.t./.i. (82),(83)) 3k]m ' U +  V +  W (9o)) 3kf  p 

(84),(85) 
) 9 [ u - v , v - w  

k+l l  + - k + (106) 
Ir32 + ra2--~ 3 r32 + r32 ) 3 VW. 

It follows that 3Ira, U, V, W contrary to (36). 

(2) Assume d 3 = k. 
(2.1) 321~ (-~31p, 32-rp), ba=k, Ca--0 (89) 7 3kl~, 
U - V , V - W  

r ~ , = ~ ( r n 2 +  U 2 -  V 2 -  W 2) 

- 2 ~ ( U  + V ) ( U -  V) 

- 2~(W- m)(V-  W)-~ 3klrL 

r-~I/2= tz( UV+ m W ) - 2 v V (  U -  V) 

+ u ( m -  V)( V -  W ) ~  3klrL. 

The condit ions 3kl~, u -  v, v -  w being invariant  
under  the operat ions (88) because W -  U =  
- ( U - V ) - ( V - W ) ,  it follows that 3klall r~, i.e. 
d3 _> k. 

(2.2) 321/.t (-*31p, 32-rp), b a = k - 1 ,  c3=1 , k > 0  

(89),(90) 
,3k-l l /z ,  U -  V, V -  W, 3Ira, U + V +  W, p 

(104) 3kip(V-W) 3k lu[v (U + V+ W ) + p V ] ]  

(lO5) 3klo(u-w) kl I 
3 V [ u ( U +  V+ W)+pV] 

( 1 0 6 )  3k W [ v ( U +  V+ W ) + p V ] J  I 

(36) 
, 3 k l v ( u +  V+ W ) + p V  

r-~l = txm2 + tx( U + V+ W)( U -  V -  W) 

- 2 u ( U +  V+ W ) ( U -  V ) + 2 v m ( V -  W) 

+ 2 W [ v ( U +  V+ W)+pV] (108) 

r-~1/2 = m[tz W + v( V -  W)] 

+ v [ ~ ( u +  v+ w)+ou] .  

The conditions 3kl~(U+ V +  W ) + p V ,  3k-'ltz, U -  V, 
V -  W, 3Ira, U + V +  W, p guarantee 3klrT,, r~l; they 
are invariant  under  the operat ions (88) because pW = 
p V - p ( V - W ) ,  p U = p V + p ( U - V ) ,  and ( W -  
U) -- - (  U - V) - ( V -  W). It follows that 3klall r~, 
i.e. d3 >_ k. 

(2.3) 324"tx, 31~ (--31o), ba=0 ,  ca=k ( 9 0 ) ) 3 k i p ,  

m, U + V + W  

r~-~ = p( U 2 -  V 2 -  W2)+ _rn[/xm + 2v( V -  W)] 
- -  

+ v( U + V +  w ) (  U -  v -  w ) - *  3klr~ 
r~J2=pUV+m_ [tzW+ v(V- W)] 

- -  

3 Ir21. + v ( U + V + W ) V - *  k + 

The condit ions 3kip, m, U+ V+ W, being invariant  
under  the operat ions (88), it follows that 3k[all r~, 
i.e. da >_ k. 

(2.4) 32-t'/x, 31~ (-*3lp), b 3 = l ,  c a = k - l ,  k > 0  

,89).(9o)) 3k_,lp, m, U + V + W, 3Ira U -  V, V -  W. 

The condit ion 3kl~(u+ v +  w)+pv is derived as in 
(2.2) if k > 1 ; if k = 1 the condit ion is satisfied because 
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b 3 =  1. The conditions 3k lv(U+ V+ W ) + p V ,  3k-alp, 
k + + m, U +  V+ W, 3/z, U -  V, V -  Wguarantee 3 [r11, r2a 

because of (108); they are invariant under the 
operations (88). It follows that 3 k all r~, i.e. d3 >- k. 

3~l~(u+ v+ w ) + p v  is always satisfied in the 
case (2.3) and in (2.1) because v ( U +  V+ W ) + p V =  
t z V + v ( U - V ) - v ( V - W ) .  The results o n  d3 can 
therefore be summarized as follows: d3=k  if 
3klv(U+ V+ W ) + p V ,  d 3 = k - 1  otherwise. 

A.5. The ~,-rhomb theorem 

It will be shown that the results obtained for dl, 
d2 affd d 3 a r e  equivalent to the ~-rhomb theorem. 
Because of (53), the theorem may be stated as follows: 

a=efgh,  

where 

e = g c d  (2, m +  U +  V+ W) 

f = g c d  (2, m +  U +  V+ W, U -  V, V -  W) 

g=gcd[iz ,  2 e - l ( U  - V ) , 2 e - I ( V  - W)] (109) 

h- -gcd  {p, 2f-am, m +  U +  V+ W, 

2[ v( U + V+ W) + pV]g- '} .  

Notice that all the arguments in the expressions for 
g and h are integral, in particular g is a factor of 

2[v(U+ V+ W ) + p V ]  

= 2 V . / z  + ev. 2e-l(  U - V ) -  ev. 2e-~( V - W). 

Proof of (109): efgh may be written uniquely as 
6a2~383, where the 8i are integers and gcd (6, 61) = 1. 
It has to be shown that 6 i=di  for i =  1,2,3. Let 
gcd~ (a, b , . . . )  denote the product of the factors other 
than 2 and 3 in gcd (a, b , . . . ) .  Let gcd~ (a, b , . . . )  for 
i = 2 or 3 denote the number of the factors of 2 or 3 
respectively in gcd (a, b , . . . ) .  

(1) Equations (109) show that 61 =glhl ,  where 
ga = gcdl (tz, U -  V, V -  W) and hi = gcda {p, m, U + 
V+ W, [ u ( U +  V+ W)+pV]g-(a}. Equations (89), 
(94) show ga = bl, (90), (94) show cl =gcdl  (p, m, 
U +  V+ W), and (97) shows gcd (bl, ca) = 1. It fol- 
lows that hi = ci ~ 61 = b~. cl = dl according to (96). 

(2) Equations (109) show that 62 = e2+f2+ g2+ h2, 
where 

e 2 =  g c d  2 (2, m +  U +  V+ W) 

f2 = gcd2 (2, m +  U +  V+ W, U -  V, V -  W) 

g2 = gcd2 [/x, 2~-e2( U -  V), 21-e2( V -  W)] 

hE = gCdE {p, 21-f2m, m+ U+ V+ W, 

2~-g~[ v( U + V + W) + p V]}. 

I f /z  is odd then g2 = 0. The fourth argument in the 
expression for h2 is then a linear combination with 

integral coefficients of the first three arguments: 

2[v(U+ V+ W)+pV]=2Vp-2~v.2~-~m 

+ 2 v ( m +  U +  V+ W) 

and may therefore be omitted. If p, is even, then p is 
odd. Already the first argument in the expression for 
h2 shows that h2=0. It follows that h2= 
gcd/(p, 21-f~m, m +  U +  V+ W) is always true. The 
following cases may be distinguished: 

ez = l ~ g2 = bz ~ h2 = c2 + l i f f z = 0 a n d  

2¢2+11p , m +  U +  V+ W, 

h = c2 otherwise. 

e 2 = O ~ f z = O = h 2  ~ g 2 = b 2 + l  if 262+ll/x 

a n d  g2 = b2 o t h e r w i s e .  

It follows that 62 = d2 in all the cases distinguished 
in the calculation of d2. 

(3) 63=g3+h3,where g3=gcd3 (IX, U -  V, V -  W) 
and h3 = g c d 3  {p, m, U +  V+ W~ 3 - g 3 [ b ' ( U +  V-J- W ) +  

pV]}. Equations (89), (94) show g3 = b3, (90), (94) 
s h o w  c 3 = g c d  3 (p ,  m, U +  V +  W ) .  The five cases dis- 
tinguished in the calculation of d 3 will be considered 
separately: 

(1) 32[1z, c3=0 

h 3 = O  

(2) 321m c3= 1 

-~ ha = 1 if 3b3+llv(U+ V+ W ) + p V ,  

h 3 = 0 o t h e r w i s e  

(3) 32y/~, 3J/z, b 3 = 0 

h 3 = c 3 

(4) 32q'm 3Ira b3= 1 
---> h3 = c 3 i f 3 c 3 + l l v ( U + V + W ) + p V  , 

h 3 = c 3 - 1 otherwise 

(5) 3-t'/z, 3q'p 

~ g 3  = h 3 = 0 .  

8 3 = d 3 in all these cases. 

APPENDIX B 
A lower bound for the multiplicity of 

specific coincidence rotations 

B.1. Introduction 

Specific coincidence rotations exist if the square of 
• the axial ratio is a rational number, i.e. c2/a 2= 3tz/2p. 
A lower bound for the multiplicity of these rotations 
will be derived in terms o f / z  and p. Specific coin- 
cidence rotations satisfy 

u ~ 0  or v # 0  
and (110) 

m # 0  or w # 0 .  
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Because equivalent rotations have the same multi- 
plicity, it suffices to give a lower bound for the 
multiplicity of disorientations, i.e. m, u, v, w may be 
restricted by 

u->O, v_>O, w_>O 
(111) 

m _> w, m >-- (p/2Ix)l/2(u + v). 

Denote the maximum of u and v by a, a -- max (u, v). 
Use will be made in the following of ( l l0 )  and of a 
subset of (111), i.e. 

u>-O,v_>O,a>O 
(112) 

m _> w _> O, m > O. 

It follows from the X-rhomb theorem for rotation 
symbols that 

where 
- - f / ( 3 f l f 2 f 3 f  4), 

f =  Ix(3m2+ wZ)+2p(u2+ uv+ v2), 

fl  = g c d  (2, r e + w )  

fz = gcd (2, m + w, u, v) 

f3 = gcd (IX, 2f-llu, 2 f [ '  v) 

f~, = g c d  (p, 2 f  21m, m +  w). 

B.2. Derivation o f  the bound 

Because gcd (Ix, v) = I and p = Ix - 3 v the following 
cases can be distinguished: 

(a) 2Iv, 2-Ox ~ 2-rp 

(b) 2-t'v, 2]Ix ~ 2-1"p 

(c) 2-t'v, 2-1"Ix ~ 21p. 

Case (a) 

f3 = g c d  (Ix, u, v), f~  = god (p, m, w). 

A number of subcases may be distinguished: 
(1.1) rn+w o d d - > f l = f z = l ,  f3<_a, f'4<_rn, 
f _> 3Ixm2 + 2pa 2. 
(1.2) m + w  even, u, v not both even-->f~=2, 
f2 = 1, f~<- a, f~  = gcd (p, 2m, m + w). 

(1.2.1) m odd (-+w odd) and w = m 
--> f'4 <_ m , f  -> 4Ixm2 + 2pa 2. 

(1.2.2) m odd (-->w odd) and w < m  
-'> f'4 <- m / 3 , f  > 3~tm 2 + 2pa 2. 

(1.2.3) m even -->f; <_ m/2 , f>_3Ixm2+2pa 2. 
(1.3) m + w ,  u, v even-->f~=f2=2, f ,< -a /2 ,  m 
and w are odd because of (64). 

(1.3.1) w = m -> f'4 < _ m, f -> 4Ixm2 + 2pa 2 
(1.3.2) w <  m--> f'4<_ m/3 ,  f > 3ixm2+2pa 2. 

The lowest bound on X follows from (1.2.1) and 
(1.3.1), i.e. 

X-> = -  2 i x - - + p  = F ( m / a ) .  
3ma 3 a 

The value of x = m / a  for which F(x)  becomes a 

minimum is obtained by setting d F / d x  = 0, i.e. 

d---x 2Ixx+ = 2Ix - ~ - 5 = 0  

X, > ~  + P (8IxP)I/2 
3 -3 - 3 

Case (b) 
The only change with respect to case (a) concerns 

f3=gcd(Ix ,  2fT~u, 2f-(Iv): f3<-2a in (1.1), f3-<a in 
(1.2) and in (1.3). 

The lowest bound on 2 follows therefore from 
(1.3.1), i.e. 

2 i x m 2 + p a 2  (2Ixp) ~/2 
I ; >  I;_> 

6ma 3 
Case (c) 

f3 = gcd (Ix, u, v), f ;  = gcd (p, 2f~'rn, m + w). 

(1.1) m + w  odd-->f~ =f2 = 1 ' f 3 < a ,  f '4= 
gcd (p, m, w)<_ m, f > 3Ixm2 + 2pa 2. 
(1.2) m + w  even, u, v not both even-~f~=2,  
f2 = 1, f3 < - a, f~  = gcd (p, 2m, m + w). 

(1.2.1) m odd (-->w odd) and w =  m 
_.> t <  f 4 -  2m, f -> 4Ixm2 + 2pa 2. 

(1.2.2) m odd (-+w odd) and w <  m 
_.> t <  f 4 -  2m/3 ,  f >  3Ixm2 + 2pa 2. 

(1.2.3) m even and w = 0  
+ f'4 <_ m , f  -> 3Ixm2 + 2pa 2. 

(1.2.4) m even and w = m 

_> ~ f'4 <- 2m if 4lp ~, f -> 4Ixm2 + 2pa2. 
[ f~ -<  m if 4~'p J 

(1.2.5) m even a n d 0 < w < m  
--> f'4 <- m / 2 , f  > 3Ixrn 2 + 2pa 2. 

(1.3) m + w ,  u, v even-->f l=f2=2,  j3<-a/2,  
f ; = g c d  (p, m, w). This coincides with (1.3) in 
case (a). 

The lowest bound on 2 follows from (1.2.1) [same 
bound from (1.2.4) if 41p], i.e. 

2Ixm2 + pa 2 (2Ixp) 1/2 

6ma 3 

The results for cases (a ) - (c )  can be summarized as 

X, -> (8Ixp)~/2/3 if Ixp is odd, 

Z _> (2Ixp)i/2/3 otherwise, 

as stated in theorem 4. 

APPENDIX C 
Upper bounds for the minimum multiplicity 

of specific coincidence rotations 

The existence of a specific coincidence rotation with 
multiplicity as given by lemma 1 can be shown as 
follows: Let Ixo be a factor of Ix, po a factor of p such 
that 3¢Ixo, po. It follows that either 3[Ixo+ po or 3]Ixo- 
Po. Equations (63) and (64) are satisfied in the first 
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case by the rotat ion symbol  (0 0/Zo. po) and in the 
second case by the rotat ion symbol ( 0 / z o 0 . p o ) .  
Choose  f o r / %  a factor  of  tz /2 if Ix is even, choose 
Po even if p is even. The ~ - r h o m b  theorem gives then 
for these rotat ion symbols 

f = / z p  2 + 2p/x 2 

_ f l i f p  is odd 
f l  = god (2, po) /2 if p is even 
A=I  
f3 = gcd (/x, P,o. 2 / f l )  = ( /Xo i f / z  is odd 

t 2/Xo i f / z  is even 
f4 = gcd (p, Po) = Po, 

and Z = f / ( 3 f l f 2 f 3 f 4 )  becomes 

~, = (tZpo/ IXo + 2pp, o/ Po) / 3 

~, = (tZPo/ 2tXo + PtXo/ Po)/ 3 

i f /xp  is odd,  
(113) 

i f / zp  is even. 

I f / x p  is odd then every integral factor  of  2/xp with 
the same n u m b e r  of  factors of  3 as p is of  the form 
2ptxo/Po. I f / x p  is even then every integral factor  of  
t xp /2  with the same number  of  factors of  3 as p is of  
the form ptxo/po with 2~o1~ i f /x  is even, Po even if 
p is even. Equat ion  (113) shows that  Z has the form 
given in l emma 1. 

The existence of  a specific coincidence rotat ion 
with multiplicity as given by lemma 2 can be shown 
as follows: Let Po be a factor  of  p / 3 , / X o  a factor  of  
/x such that  31txo. Equat ions  (63), (64) are satisfied 
by the rotat ion symbol (Po 0/-I,o. 0). Choose  f o r / %  a 
factor o f / x / 2  if/~ is even, choose Po even if  p is even. 
The ~;-rhomb theorem gives then for these rotat ion 
symbols 

f =  3/xp 2 + 2p/z 2, 

f l ,  f2 and f3 as in the p roo f  of  l emma 1 and 

f4 = gcd (Po, p / 3 )  = Po. 

The multiplicity becomes 

,~ = txPollxo+ (2pl3) t zo /Po i f /xp  is odd,  

=/xp0/2y.0+ (P/3)lZo/Po i f /xp  is even. 

If/-~P is even then (at least) one of  the factors p, q 
of  i.Lp/6 is a multiple of  3. This factor  can be written 
in the form (p/-Lo)/(3po), the other in the form 
(/zpo)/(2/Zo). 

I f / z p  is odd then one has either that  one of  the 
factors p, q of  2txp/3  is a multiple of  6 or  that  one is 
not a mult iple of  2 and the other  not a mult iple of  3. 
In the first case the factor  which is a mult iple of  6 
can be writ ten as (2plxo)/(3po) and the other  factor  
as tzpo/tZo. In the second case consider  the rotat ion 
symbol (20o 0/~o. 0) with Po, /.~o as above. The 2;- 
rhomb theorem gives f l  = 2, f2 = 1, f3 =/~o, f4 = po and 

~, = 2tzPo/ l~o + ( p / 3  )lxo/ Po 

for this symbol.  The factor  which is not a multiple 
of  3 can be written as 2p, po//Zo, the other  as 
(plzo)/(3po).  This completes the p roof  of  l emma 2. 
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